Data Analysis (I)

我只是为了找个记笔记的地方

基本物理量的导入

simple data analysis codes for transport measurements using MATLAB

具体MATLAB代码见下面:

做数据处理经常使用的基本物理量包括 : 单电子电荷量 / 约化普朗克常量 / 真空介电常数 以及它们的组合。

1
2
3
4
5
6
7
single_electron = 1.602176634 * 10^(-19); % C
vaccum_perm = 8.854187817 * 10^(-12); % F/m
h_planck = 6.62607015 * 10^(-34); % J·s

quantum_conductance = single_electron^2 / h_planck;
factor = single_electron / (2 * vaccum_perm); % unit is m * V
factor = factor * 10^(2); % unit is cm * V

计算hBN晶体的厚度或电容

d=ε0εreC,C=ε0εredε0=1.6021766341019 F/cm C 的单位是每平方厘米通过电容调控的载流子浓度 [Fcm2/C]d = \frac{\varepsilon_0 \varepsilon_r}{eC}, C = \frac{\varepsilon_0 \varepsilon_r}{ed} \\ \varepsilon_0 = 1.602176634 * 10^{-19} \text{ F/cm } \\ C \text{ 的单位是每平方厘米通过电容调控的载流子浓度 } [F*cm^2/C]

通常,dd 的量级在 O(106)cmO(10^{-6}) cm,而 CC 的量级在 O(1011)Fcm2/CO(10^{11}) F * cm^2 / C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
function bn_thickness = calc_bn_thickness(bn_capacitance, dielectric_const)
% 计算电容公式:C = epsilon * S / d,但在这里我们使用的是单位面积诱导出多少载流子(而非电荷量)的电容
% 即 C / (e * S) = epsilon / (d * e)
one_electron_coulomb = 1.602176634 * 10^(-19); % C
epsilon_0 = 8.85 * 10^(-14); % F/cm
epsilon_now = epsilon_0 * dielectric_const;

thickness = epsilon_now / (capacitance * one_electron_coulomb);
end

function bn_capacitance = calc_bn_capacitance(bn_thickness, dielectric_const)
% bn_thickness的单位是cm
%
one_electron_coulomb = 1.602176634 * 10^(-19); % C
epsilon_0 = 8.85 * 10^(-14); % F/cm
epsilon_now = epsilon_0 * dielectric_const;

bn_capacitance = epsilon_now / (bn_thickness * one_electron_coulomb);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% example
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% calc_bn_thickness(0.4480 * 10^(12), 3) bn的相对介电常数设为3

双栅调控

对于一个dual-gate的器件,如果知道了上下栅极的电容调控能力,那么可以通过改变施加在栅极上的电压来改变器件中的电位移场和载流子浓度,反之亦然。

n=(CtVt+CbVb)D=(CtVtCbVb)e2ε0n = (C_t V_t + C_b V_b) \\ D = (C_t V_t - C_b V_b) * \frac{e}{2\varepsilon_0}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
%% convert nD to two gate
function [Vt, Vb] = convert_nD_2_VtVb(carrier_density, disp_field, Ct, Cb)
% Ct top gate的电容,单位是10^(12) /cm^2 , 已经除去了电荷量
% Cb bottom gate的电容,单位是10^(12) /cm^2 , 已经除去了电荷量
% 基本物理量
single_electron = 1.602176634 * 10^(-19); % C
epsilon_0 = 8.85 * 10^(-12); % F/m

a = 2 * epsilon_0 / single_electron * 10^(-7) * disp_field;
b = 10^(-12) * carrier_density;

Vt = 1 / (2 * Ct) * (b + a);
Vb = 1 / (2 * Cb) * (b - a);
end

%% convert two gate to nD
function [carrier_density, disp_field] = convert_VtVb_2_nD(Vt, Vb, Ct, Cb)
% Ct top gate的电容,单位是10^(12) /cm^2 , 已经除去了电荷量
% Cb bottom gate的电容,单位是10^(12) /cm^2 , 已经除去了电荷量
% 基本物理量
single_electron = 1.602176634 * 10^(-19); % C
epsilon_0 = 8.85 * 10^(-12); % F/m

carrier_density = (Ct * Vt + Cb * Vb) * 10^(12);
disp_field = (Ct * Vt - Cb * Vb) * 10^(12); % 单位为每平方厘米
disp_field = disp_field * 10^(4); % 单位为每平方米
disp_field = disp_field * single_electron / (2 * epsilon_0); % 单位为每米
disp_field = disp_field * 10^(-9); % 单位为每纳米
end

计算转角或全填充载流子浓度

1
2
3
4
5
6
7
8
9
10
11
12
13
%% calculate carrier density at full filling
function ns = calc_full_filling(twist_angle)
% ns : full filling carrier density a : lattice constant
angle_arc = twist_angle / 180 * pi;

ns = 7.63236 * 10^(15) * (angle_arc)^2;
end

%% calculate twist angle
function twist_angle = calc_twist_angle(ns)
% ns : full filling carrier density a : lattice constant
twist_angle = sqrt(ns / 7.6323 * 10^(-3)) / pi * 180;
end

Data Analysis (I)
http://example.com/2023/04/26/data_analysis/
Author
Shijie Fang
Posted on
April 26, 2023
Licensed under