我只是为了找个记笔记的地方
基本物理量的导入
simple data analysis codes for transport measurements using MATLAB
具体MATLAB代码见下面:
做数据处理经常使用的基本物理量包括 : 单电子电荷量 / 约化普朗克常量 / 真空介电常数 以及它们的组合。
1 2 3 4 5 6 7 single_electron = 1.602176634 * 10 ^(-19 ); vaccum_perm = 8.854187817 * 10 ^(-12 ); h_planck = 6.62607015 * 10 ^(-34 ); quantum_conductance = single_electron^2 / h_planck;factor = single_electron / (2 * vaccum_perm); factor = factor * 10 ^(2 );
计算hBN晶体的厚度或电容
d = ε 0 ε r e C , C = ε 0 ε r e d ε 0 = 1.602176634 ∗ 1 0 − 19 F/cm C 的单位是每平方厘米通过电容调控的载流子浓度 [ F ∗ c m 2 / C ] d = \frac{\varepsilon_0 \varepsilon_r}{eC},
C = \frac{\varepsilon_0 \varepsilon_r}{ed} \\
\varepsilon_0 = 1.602176634 * 10^{-19} \text{ F/cm } \\
C \text{ 的单位是每平方厘米通过电容调控的载流子浓度 } [F*cm^2/C]
d = e C ε 0 ε r , C = e d ε 0 ε r ε 0 = 1.602176634 ∗ 1 0 − 19 F/cm C 的单位是每平方厘米通过电容调控的载流子浓度 [ F ∗ c m 2 / C ]
通常,d d d 的量级在 O ( 1 0 − 6 ) c m O(10^{-6}) cm O ( 1 0 − 6 ) c m ,而 C C C 的量级在 O ( 1 0 11 ) F ∗ c m 2 / C O(10^{11}) F * cm^2 / C O ( 1 0 11 ) F ∗ c m 2 / C
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 function bn_thickness = calc_bn_thickness (bn_capacitance, dielectric_const) one_electron_coulomb = 1.602176634 * 10 ^(-19 ); epsilon_0 = 8.85 * 10 ^(-14 ); epsilon_now = epsilon_0 * dielectric_const; thickness = epsilon_now / (capacitance * one_electron_coulomb);end function bn_capacitance = calc_bn_capacitance (bn_thickness, dielectric_const) one_electron_coulomb = 1.602176634 * 10 ^(-19 ); epsilon_0 = 8.85 * 10 ^(-14 ); epsilon_now = epsilon_0 * dielectric_const; bn_capacitance = epsilon_now / (bn_thickness * one_electron_coulomb);end
双栅调控
对于一个dual-gate的器件,如果知道了上下栅极的电容调控能力,那么可以通过改变施加在栅极上的电压来改变器件中的电位移场和载流子浓度,反之亦然。
n = ( C t V t + C b V b ) D = ( C t V t − C b V b ) ∗ e 2 ε 0 n = (C_t V_t + C_b V_b) \\
D = (C_t V_t - C_b V_b) * \frac{e}{2\varepsilon_0}
n = ( C t V t + C b V b ) D = ( C t V t − C b V b ) ∗ 2 ε 0 e
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 function [Vt, Vb] = convert_nD_2_VtVb (carrier_density, disp_field, Ct, Cb) single_electron = 1.602176634 * 10 ^(-19 ); epsilon_0 = 8.85 * 10 ^(-12 ); a = 2 * epsilon_0 / single_electron * 10 ^(-7 ) * disp_field; b = 10 ^(-12 ) * carrier_density; Vt = 1 / (2 * Ct) * (b + a); Vb = 1 / (2 * Cb) * (b - a);end function [carrier_density, disp_field] = convert_VtVb_2_nD (Vt, Vb, Ct, Cb) single_electron = 1.602176634 * 10 ^(-19 ); epsilon_0 = 8.85 * 10 ^(-12 ); carrier_density = (Ct * Vt + Cb * Vb) * 10 ^(12 ); disp_field = (Ct * Vt - Cb * Vb) * 10 ^(12 ); disp_field = disp_field * 10 ^(4 ); disp_field = disp_field * single_electron / (2 * epsilon_0); disp_field = disp_field * 10 ^(-9 ); end
计算转角或全填充载流子浓度
1 2 3 4 5 6 7 8 9 10 11 12 13 function ns = calc_full_filling (twist_angle) angle_arc = twist_angle / 180 * pi ; ns = 7.63236 * 10 ^(15 ) * (angle_arc)^2 ;end function twist_angle = calc_twist_angle (ns) twist_angle = sqrt (ns / 7.6323 * 10 ^(-3 )) / pi * 180 ;end