some codes about ABA-TLG

Some simple simulation / visualization codes of band structure of ABA tri-layer graphene.

  1. continuum model of band structure

    the ABA-TLG continuum model can be transformed into a monolayer-like part and a bilayer-like part.

    Ht(k)=(Hm(k)DDHb(k))H_t(\mathbf{k}) = \begin{pmatrix} H_m(\mathbf{k}) & D \\ D^{\dagger} & H_b(\mathbf{k}) \\ \end{pmatrix}\\[20pt]

    where,

    Hm(k)=(γ2/2+Δ2γ0f(k)γ0f(k)δγ5/2+Δ2)Hb(k)=(γ2/2+Δ2γ0f(k)2γ4f(k)2γ3f(k)γ0f(k)δ+γ5/2+Δ22γ12γ4f(k)2γ4f(k)2γ1δ2Δ2γ0f(k)2γ3fk)2γ4f(k)γ0f(k)2Δ2)D=(Δ10000Δ100){\small \begin{align} H_m(\mathbf{k}) =& \begin{pmatrix} -\gamma_2/2 + \Delta_2 & \gamma_0 f^{*}(\mathbf{k}) \\ \gamma_0 f(\mathbf{k}) & \delta - \gamma_5 / 2 + \Delta_2 \\ \end{pmatrix} \\ \nonumber \\ H_b(\mathbf{k}) =& \begin{pmatrix} \gamma_2/2 + \Delta_2 & \gamma_0 f^{*}(\mathbf{k}) & -\sqrt{2}\gamma_4f^{*}(\mathbf{k}) & \sqrt{2}\gamma_3f(\mathbf{k}) \\ \gamma_0 f(\mathbf{k}) & \delta + \gamma_5 / 2 + \Delta_2 & \sqrt{2}\gamma_1 & -\sqrt{2}\gamma_4f^{*}(\mathbf{k}) \\ -\sqrt{2}\gamma_4f(\mathbf{k}) & \sqrt{2}\gamma_1 & \delta - 2 \Delta_2 & \gamma_0 f^{*}(\mathbf{k}) \\ \sqrt{2}\gamma_3f^{*}\mathbf{k}) & -\sqrt{2}\gamma_4f(\mathbf{k}) & \gamma_0 f(\mathbf{k}) & -2\Delta_2 \end{pmatrix} \\ \nonumber \\ D =& \begin{pmatrix} \Delta_1 & 0 & 0 & 0 \\ 0 & \Delta_1 & 0 & 0 \end{pmatrix} \end{align} }

  2. Load data

  3. Parameters setup

  4. calculate the eigenstates / eigenvalues

  5. calculate the parity / layer distribution by eigenvectos

  6. Visualization (3D surface & contour of Fermi surface topology)

  7. result with Δ1=200meV\Delta_1 = 200meV

    the emergent gullies in the low energy regime

fermi_suface_3D_before

the evolution of Fermi surface on the electron side

fermi_suface_electron_before

the evolution of Fermi surface on the hole side

fermi_suface_hole_before


some codes about ABA-TLG
http://example.com/2023/04/26/ABA_tLG_sim/
Author
Shijie Fang
Posted on
April 26, 2023
Licensed under